Cloud-computing platforms provide services to consumers through multiple service-delivery
models. Recent advances in these models have led to the emergence of serverless computing, or
simply serverless, a paradigm in which software systems are composed of functions - reusable,
lightweight units of code executed within isolated sandboxed environments. Major cloud-
computing platforms, including Amazon Web Services (AWS), Microsoft Azure, and Google Cloud,
report that a substantial proportion of their customers employ serverless solutions.

Most cloud-computing providers employ a pay-as-you-go billing model. Inefficient utilization of
computing resources, particularly CPU time and working memory, which constitute the most
costly resources, leads to increased overall operational costs. Moreover, the requirement for
sandboxing adversely affects initialization latency and results in additional CPU and working-
memory overhead. Serverless sandboxes are typically deployed on top of heavyweight
virtualization stacks, further increasing working-memory consumption.

Modern cloud-computing architectures use Checkpoint/Restore techniques to freeze initialized
sandboxes into a continuable form. Such techniques, in combination with cloud-native
deployments, allow the virtualized environment to optimize resource consumption and share
code and pre-initialized data across multiple sandboxes. However, such solutions operate at
application-build time and cannot pre-initialize and share data available during application
execution. Such data is processed multiple times and duplicated in each sandbox.

This dissertation presents Doss, a direct object snapshotting and sharing system that performs
data c/r during application execution. Doss persists data directly, without transformations, into
reusable and shareable snapshots. Direct snapshotting allows Doss to achieve near-constant data
deserialization, greatly improving initialization times and reducing CPU usage. Doss architecture
enables snapshot sharing across application instances, eliminating the excess memory footprint
associated with data re-processing and duplication.

GraalDoss, a Doss implementation for Java, is integrated into the GraalVM ecosystem. GraalDoss
is evaluated using 106 correctness and robustness tests and a novel set of cloud-native micro and
macro benchmarks that exercise real-world scenarios. A comprehensive evaluation of GraalDoss
shows a consistent near-constant data-deserialization overhead with serialization times
comparable to state-of-the-art Java JSON and binary serialization libraries. GraalDoss eliminates
the memory footprint of web APl microservice caches by sharing populated cache snapshots
across microservice instances, improving the overall density by 41% for 8 microservice instances
and improving first-response times by 34%. In NLP applications, GraalDoss improves the pipeline
execution times by six orders of magnitude by snapshotting pipeline results and subsequently
loading the snapshots.



