
Cloud-computing platforms provide services to consumers through multiple service-delivery 

models. Recent advances in these models have led to the emergence of serverless computing, or 

simply serverless, a paradigm in which software systems are composed of functions - reusable, 

lightweight units of code executed within isolated sandboxed environments. Major cloud-

computing platforms, including Amazon Web Services (AWS), Microsoft Azure, and Google Cloud, 

report that a substantial proportion of their customers employ serverless solutions. 

Most cloud-computing providers employ a pay-as-you-go billing model. Inefficient utilization of 

computing resources, particularly CPU time and working memory, which constitute the most 

costly resources, leads to increased overall operational costs. Moreover, the requirement for 

sandboxing adversely affects initialization latency and results in additional CPU and working-

memory overhead. Serverless sandboxes are typically deployed on top of heavyweight 

virtualization stacks, further increasing working-memory consumption. 

Modern cloud-computing architectures use Checkpoint/Restore techniques to freeze initialized 

sandboxes into a continuable form. Such techniques, in combination with cloud-native 

deployments, allow the virtualized environment to optimize resource consumption and share 

code and pre-initialized data across multiple sandboxes. However, such solutions operate at 

application-build time and cannot pre-initialize and share data available during application 

execution. Such data is processed multiple times and duplicated in each sandbox. 

This dissertation presents Doss, a direct object snapshotting and sharing system that performs 

data c/r during application execution. Doss persists data directly, without transformations, into 

reusable and shareable snapshots. Direct snapshotting allows Doss to achieve near-constant data 

deserialization, greatly improving initialization times and reducing CPU usage. Doss architecture 

enables snapshot sharing across application instances, eliminating the excess memory footprint 

associated with data re-processing and duplication. 

GraalDoss, a Doss implementation for Java, is integrated into the GraalVM ecosystem. GraalDoss 

is evaluated using 106 correctness and robustness tests and a novel set of cloud-native micro and 

macro benchmarks that exercise real-world scenarios. A comprehensive evaluation of GraalDoss 

shows a consistent near-constant data-deserialization overhead with serialization times 

comparable to state-of-the-art Java JSON and binary serialization libraries. GraalDoss eliminates 

the memory footprint of web API microservice caches by sharing populated cache snapshots 

across microservice instances, improving the overall density by 41% for 8 microservice instances 

and improving first-response times by 34%. In NLP applications, GraalDoss improves the pipeline 

execution times by six orders of magnitude by snapshotting pipeline results and subsequently 

loading the snapshots. 


